A Bayesian signal detection procedure for scale- space random fields
نویسندگان
چکیده
The authors consider the problem of searching for activation in brain images obtained from functional magnetic resonance imaging and the corresponding functional signal detection problem. They develop a Bayesian procedure to detect signals existing within noisy images when the image is modeled as a scale space random field. Their procedure is based on the Radon–Nikodym derivative, which is used as the Bayes factor for assessing the point null hypothesis of no signal. They apply their method to data from the Montreal Neurological Institute. Une procédure bayésienne de détection de signal en champs aléatoires à espace d’échelle Résumé : Les auteurs s’intéressent au repérage de l’activation cérébrale à partir d’imagerie fonctionnelle par résonnance magnétique et au problème de détection du signal fonctionnel afférent. Ils développent une procédure bayésienne permettant de détecter un signal présent dans des images bruitées modélisées en champs aléatoires à espace d’échelle. Leur procédure s’appuie sur une dérivée de Radon–Nikodym qui sert de facteur de Bayes dans l’évaluation de l’hypothèse nulle d’absence de signal. Ils illustrent leur méthode au moyen de données provenant de l’Institut neurologique de Montréal.
منابع مشابه
Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملA Mthod for Generating the Turbulent Intermittency Function
A detection method based on sensitization of a squared double differentiated signal is developed which discriminates the turbulent zones from laminar zones quite accurately. The procedure adopts a variable threshold and a variable hold time of the order of the Kolmogorov time scale. The output file so generated, includes all the information for further analysis of the turbulent signal.
متن کاملدربارۀ شناسایی بیزیِ دنبالهای نقطۀ تغییر
The problems of sequential change-point have several important applications in quality control, signal processing, and failure detection in industry and finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time τ, the process behavior changes and the distribution of the data changes from p0 to p1. Two cases are consi...
متن کاملMarkov Random Field Extensions using State Space Models
We elaborate on the link between state space models and (Gaussian) Markov random fields. We extend the Markov random field models by generalising the corresponding state space model. It turns out that several non Gaussian spatial models can be analysed by combining approximate Kalman filter techniques with importance sampling. We illustrate the ideas by formulating a model for edge detection in...
متن کاملQuasi-random nonlinear scale space
A novel nonlinear scale space framework is proposed for the purpose of multi-scale image representation. The scale space decomposition problem is formulated as a general Bayesian least-squares estimation problem. A quasi-random density estimation approach is introduced for estimating the posterior distribution between consecutive scale space realizations. In addition, the application of the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005